# Specific receptors for endothelin-3 in cultured bovine endothelial cells and its cellular mechanism of action

## Toshiaki Emori, Yukio Hirata and Fumiaki Marumo

Second Department of Internal Medicine, Tokyo Medical and Dental University, Tokyo 113, Japan

Received 21 January 1990; revised version received 28 February 1990

Among three endothelin (ET) isopeptides, ET-3 shows the most potent initial depressor response through the endothelium-dependent mechanism. We studied the presence of specific binding sites for ET-3 in cultured bovine endothelial cells (EC) and its cellular mechanism of action. Binding studies revealed the presence of two distinct subclasses of ET-3 receptors with high and low affinities. ET-3 dose-dependently ( $10^{-10}-10^{-7}$  M) increased both intracellular  $10^{-10}$  cultured by either removal of extracellular  $10^{-10}$  cultured blockers. These data suggest that ET-3 induces phosphoinositide breakdown and increase in  $10^{-10}$  in ECs, possibly resulting from intracellular  $10^{-10}$  mobilization, thereby leading to vasodilatation.

Endothelin-3; Endothelial cell; Vasodilatation

#### 1. INTRODUCTION

Endothelin (ET) is a novel potent vasoconstrictor peptide with 21 amino acid residues, originally characterized from the supernatant of cultured porcine endothelial cells (EC) [1]. Recently, three distinct ET genes have been demonstrated in the human, porcine and rat genomes [2], and cloning and sequence analysis of these genes revealed three ET isopeptides (ET-1, ET-2, ET-3). ET-1 is identical to human/porcine ET and ET-2 is [Trp<sup>6</sup>,Leu<sup>7</sup>]ET-1, while ET-3 is identical to ET originally deduced from cDNA cloning of rat genome. These three isopeptides show different pharmacological profiles of pressor/vasoconstrictor activities [2]; ET-3, despite its least potency in pressor response, exerts the most potent initial depressor response among three ET isopeptides.

Warner et al. have recently demonstrated that ET-3 is more selective than ET-1 as a vasodilator through the release of EDRF at doses 100-fold lower than those required to induce vasoconstriction [3], suggesting its physiological role as a vasodilator rather than a vasoconstrictor. To our knowledge, there has been no direct evidence that ET-3 directly acts on EC. Therefore, the present study was designed to investigate whether there exists a specific receptor for ET-3 in cultured bovine EC and to elucidate its intracellular responses.

Correspondence address: Y. Hirata, Endocrine Division, Second Department of Internal Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113, Japan

#### 2. MATERIALS AND METHODS

#### 2.1. Binding experiments

Subcultured bovine carotid artery ECs (7–9th passage) were used in the experiments. Binding studies were performed essentially in the same manner as [ $^{125}$ I]ET-1 binding to vascular smooth muscle cells (VSMC) as described [4]. Briefly, confluent ECs ( $\sim$ 6 ×  $10^5$  cells) were incubated with 2.5 ×  $10^{-13}$  M [ $^{125}$ I]ET-3 (spec. act.  $\sim$ 74 TBq/mmol, Amersham Japan, Tokyo) in 1 ml Hanks' balanced salt solution containing 0.1% bovine serum albumin at 37°C for 60 min. After completion, cells were extensively washed and the cell-bound radioactivity was determined. Specific binding was defined as total binding minus nonspecific binding in the presence of an excess ( $10^{-7}$  M) of unlabeled ET-3 (Peptide Institute Inc., Osaka, Japan).

# 2.2. Measurement of cytosolic free Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>)

After incubation in serum-free Dulbecco's modified Eagle's medium (DMEM) for 36 h, ECs were trypsinized and incubated with  $4\,\mu\text{M}$  fura-2 acetoxymethyl ester (Dojin Chemicals, Kumamoto, Japan) at 37°C for 20 min in Hepes-buffered physiological salt solution essentially in the same way as reported [4]. The fluorescence of  $\text{Ca}^{2+}$ -fura-2 of the suspended cells ( $\sim 5 \times 10^6$  cells/ml) was measured by a spectrofluorimeter (CAF-100; Jasco Co., Ltd., Tokyo, Japan) using excitation of 340 and 380 nm, and emission of 500 nm. Values of [Ca<sup>2+</sup>]; were calculated according to the method of Grykiewicz et al. [5].

#### 2.3. Measurement of inositol-1,4,5-trisphosphate (IP<sub>3</sub>)

Confluent ECs preincubated in serum-free DMEM were incubated at 37°C with or without ET-3 in Hanks' medium containing 10 mM LiCl for the indicated times. Incubation was terminated by rapid removal of medium and addition of ice-cold 15% trichloroacetic acid (TCA), and the cells were placed on ice for 30 min. TCA extract was washed with ethylether and neutralized with 1 N sodium acetate. IP<sub>3</sub> levels were determined by a competitive protein binding assay kit (Amersham Japan, Tokyo).

# 3. RESULTS

Specific binding of [125I]ET-3 to bovine EC was a

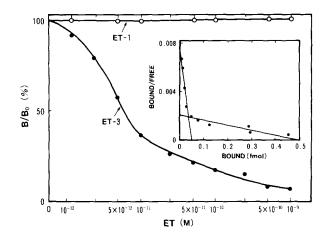



Fig. 1. Competitive binding of [1251]ET-3 by unlabeled ET-3 and ET-1 to cultured bovine EC. Confluent cells were incubated at 37°C for 60 min with 2.5 × 10<sup>-13</sup> M [1251]ET-3 in the absence and the presence of unlabeled ET-3 (•) or ET-1 (•) in concentrations as indicated. The bound [1251]ET-3 was 1.8 fmol/10<sup>6</sup> cells in the absence of unlabeled ET-3. Nonspecific binding was 38% of total binding and subtracted from all values. Each point is the mean of two experiments. (Inset) Scatchard plot of binding data.

time- and temperature-dependent process; binding at  $37^{\circ}$ C was more rapid and greater than at  $4^{\circ}$ C, reaching an equilibrium after 60 min. Nonspecific binding at  $37^{\circ}$ C was  $\sim 40\%$  of total binding throughout the incubation. As shown in Fig. 1, unlabeled ET-3 competitively inhibited the binding of [ $^{125}$ I]ET-3 to bovine EC, whereas ET-1 did not affect the binding in concentrations up to  $10^{-7}$  M. Scatchard analysis of the binding data (Fig. 1, inset) suggested the presence of two distinct subclasses of binding sites for ET-3: one with high-affinity ( $K_d$ :  $6.6 \times 10^{-12}$  M) and low capacity

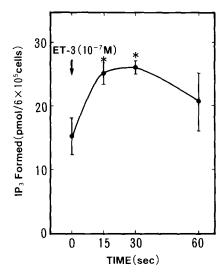



Fig. 3. Effect of ET-3 on IP<sub>3</sub> formation in cultured bovine EC as a function of time. Confluent cells were incubated with ET-3 ( $10^{-7}$  M) in Hanks' medium containing 10 mM LiCl for the indicated times. Each point is the mean of triplicate dishes; bars show SE. Asterisks show statistically significant differences from the unstimulated control cells (P < 0.05).

 $(B_{\rm max}: 50 \text{ sites/cell})$ , and the other with low-affinity  $(K_{\rm d}: 2.5 \times 10^{-10} \text{ M})$  and high-capacity  $(B_{\rm max}: 490 \text{ sites/cell})$ .

As shown in Fig. 2, ET-3 dose-dependently  $(10^{-10}-10^{-7} \text{ M})$  induced an immediate and transient increase in  $[\text{Ca}^{2+}]_i$ ;  $[\text{Ca}^{2+}]_i$  increased significantly (P < 0.01) from 88  $\pm$  2.4 nM (mean  $\pm$  SE, n = 12) to 101  $\pm$  1.3 (n = 3,  $10^{-10}$  M), 127  $\pm$  2.3 (n = 3,  $10^{-9}$  M), 171  $\pm$  3.5 (n = 3,  $10^{-8}$  M) and 219  $\pm$  3.0 (n = 3,  $10^{-7}$  M) 5 s after the addition of ET-3. The increase in  $[\text{Ca}^{2+}]_i$  stimulated by  $10^{-7}$  M ET-3 was not affected by

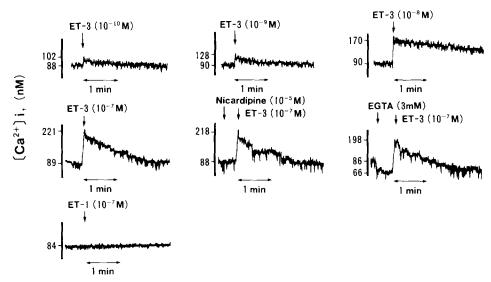



Fig. 2. Changes of  $Ca^{2+}$ -fura-2 fluorescence by ET-3 and ET-1 in cultured bovine EC. Cell suspensions loaded with fura-2 were challenged with various doses ( $10^{-10}-10^{-7}$  M) of ET-3 and ET-1 ( $10^{-7}$  M). The basal  $[Ca^{2+}]_i$  were  $88 \pm 2.4$  nM (mean  $\pm$  SE, n=12). Each panel shows a typical tracing from representative experiments. Calculated values for  $[Ca^{2+}]_i$  are shown on the ordinates.

pretreatment with either  $10^{-5}$  M nicardipine or 3 mM EGTA. However, ET-1 ( $10^{-7}$  M) had no effect.

ET-3 ( $10^{-7}$  M) induced an immediate (15-30 s) formation of IP<sub>3</sub>, followed by a gradual decline by one min (Fig. 3). ET-3 dose-dependently ( $10^{-9}-10^{-7}$  M) stimulated formation of IP<sub>3</sub> during 30 s incubation, whereas ET-1 ( $10^{-7}$  M) was without effect (not shown).

#### 4. DISCUSSION

It has originally been reported that ET-1 causes a transient decrease in systemic arterial blood pressure accompanied by regional vasodilating responses in anesthetized rats [1,2]. Furthermore, De Nucci et al. have reported that ET-1 induces transient depressor response in isolated perfused rat mesenteries mediated by the release of EDRF [6]. A subsequent study by the same group has shown that ET-3 is far more potent than ET-1 in vasodilating perfused rat mesenteries [3], suggesting that ET-3 functions as a vasodilator rather than a vasoconstrictor.

This is the first report demonstrating the presence of specific receptors for ET-3 in cultured bovine EC, with which ET-1 does not interact. The present binding study clearly shows two distinct subpopulations of binding sites for ET-3 with higher ( $K_d$ :  $7 \times 10^{-12}$  M) and lower ( $K_d$ :  $2.5 \times 10^{-10}$  M) affinities in cultured bovine EC. Recent studies have reported that at least two subtypes of binding sites for ET isopeptides exist in the membranes of chick heart [7] and rat lung [8]; one subtype with preferential binding affinity to ET-1 and ET-2, and the other to ET-3, suggesting that the population of ET receptor subtypes may differ from one tissue to another. Our data indicate that ECs express predominantly ET-3 receptor subtype.

The present study also demonstrates that ET-3, but not ET-1, dose-dependently  $(10^{-10}-10^{-7} \text{ M})$  induces profound increases in  $[\text{Ca}^{2+}]_i$  in fura-2-loaded EC. These data are compatible with those of the ET-1-induced  $[\text{Ca}^{2+}]_i$  increase in cultured rat VSMC [4]. However, the failure of chelating extracellular  $\text{Ca}^{2+}$  by EGTA and inhibiting voltage-dependent  $\text{Ca}^{2+}$ -channels by nicardipine on ET-3-induced  $[\text{Ca}^{2+}]_i$  increase, strongly suggests that the rise of  $[\text{Ca}^{2+}]_i$  stimulated by ET-3 resulted from intracellular  $\text{Ca}^{2+}$  release rather than  $\text{Ca}^{2+}$  influx from extracellular source.

In fact, the present study shows that ET-3 induces an immediate (15–30 s) and dose-responsive effect on IP<sub>3</sub> formation, suggesting that ET-3 stimulates phosphoinositide breakdown in EC in a similar manner as does ET-1 in VSMC [9]. Since IP<sub>3</sub> serves as a second messenger for mobilizing  $Ca^{2+}$  from intracellular store sites [10], the concomitant rapid responses in both IP<sub>3</sub> formation and  $[Ca^{2+}]_i$  increase by ET-3 indicate that the ET-3-induced increase in  $[Ca^{2+}]_i$  derives mainly from intracellular  $Ca^{2+}$  mobilization in EC.

However, the dose-dependency of ET-3  $(10^{-10}-10^{-7} \text{ M})$  on increases in  $[\text{Ca}^{2+}]_i$  and  $IP_3$  formation does not appear to correspond to the apparent  $K_d$ values from the binding data. The apparent discrepancy may be partly accounted for by different cell preparations and incubation conditions (temperature, time) used for the binding study and measurements of [Ca<sup>2+</sup>]<sub>i</sub> and IP<sub>3</sub> formation. Alternatively, the ET-3-induced [Ca<sup>2+</sup>]<sub>i</sub> increase and IP<sub>3</sub> formation in EC may be a consequence of the activation of the loweraffinity ET-3 receptors. Indeed, it has recently been reported that there also exist two subpopulations of ET-1 receptors in cultured rat glomerular mesangial cells and the ET-1-induced IP<sub>3</sub> formation, [Ca<sup>2+</sup>]<sub>i</sub> increase and subsequent contraction may be mediated through the low-affinity ET-1 receptors [11]. If that is the case, the nature of the biological response by the higher-affinity ET-3 receptors in EC needs to be elucidated.

Our data are consistent with the contention that mobilization of intracellular Ca<sup>2+</sup> is required for the production and/or release of endothelium-derived vasodilators, such as EDRF and prostacyclin [12]. Thus, the presence of specific ET-3 receptors in EC strongly suggests that ET-3 plays an important role in the regulation of vasodilatation, possibly via receptor-mediated release of EDRF and/or prostacyclin from EC. The precise interaction between the ET-1-induced vasoconstriction and the ET-3-induced vasodilatation in the regulation of vascular tonus remains open to question.

Acknowledgements: This study was supported in part by Grants-in-Aid from the Ministry of Education, Science and Culture (01480217, 01480286) and the Ministry of Health and Welfare (62A-1, 63C-1), Japan, and a fund from the Japan Cardiovascular Research Foundation (1989).

# REFERENCES

- Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K. and Masaki, T. (1988) Nature 332, 411-415.
- [2] Inoue, A., Yanagisawa, M., Kimura, S., Kasuya, Y., Miyauchi, T., Goto, K. and Masaki, T. (1989) Proc. Natl. Acad. Sci. USA 86, 2863–2867.
- [3] Warner, T.D., De Nucci, G. and Vane, J.R. (1989) Eur. J. Pharmacol. 159, 325-326.
- [4] Hirata, Y., Yoshimi, H., Takata, S., Watanabe, T.X., Kumagai, S., Nakajima, K. and Sakakibara, S. (1988) Biochem. Biophys. Res. Commun. 154, 868-875.
- [5] Grykiewicz, G., Poenie, M. and Tsien, M.P. (1985) J. Biol. Chem. 260, 3440-3450.
- [6] De Nucci, G., Thomas, R., D'Orleans-Juste, P., Antunes, E., Walder, C., Warner, T.D. and Vane, J.R. (1988) Proc. Natl. Acad. Sci. USA 85, 9797-9800.
- [7] Watanabe, H., Miyazaki, H., Kondoh, M., Masuda, Y., Kimura, S., Yanagisawa, M., Masaki, T. and Murakami, K. (1989) Biochem. Biophys. Res. Commun. 161, 1252-1259.

- [8] Masuda, Y., Miyazaki, H., Kondoh, M., Watanabe, H., Yanagisawa, M., Masaki, T. and Murakami, K. (1989) FEBS Lett. 257, 208-210.
- [9] Resink, T.J., Scott-Burden, T. and Buhler, R. (1988) Biochem. Biophys. Res. Commun. 157, 1360-1368.
- [10] Nishizuka, Y. (1984) Nature 308, 693-698.

- [11] Badr, K.F., Munger, K.A., Sugiura, M., Snajdar, R.M., Schwartzberg, M. and Inagami, T. (1989) Biochem. Biophys. Res. Commun. 161, 776-781.
- [12] Gryglewski, R.J., Botting, R.M. and Vane, J.R. (1988) Hypertension 12, 530-548.